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Abstract

As multimedia information proliferates, multimodal recom-
mendation systems have garnered significant attention. These
systems leverage multimodal information to alleviate the data
sparsity issue inherent in recommendation systems, thereby
enhancing the accuracy of recommendations. Due to the nat-
ural semantic disparities among multimodal features, recent
research has primarily focused on cross-modal alignment us-
ing self-supervised learning to bridge these gaps. However,
aligning different modal features might result in the loss of
valuable interaction information, distancing them from ID
embeddings. It is crucial to recognize that the primary goal
of multimodal recommendation is to predict user preferences,
not merely to understand multimodal content. To this end,
we propose a new Multi-level sElf-supervised learNing for
mulTimOdal Recommendation (MENTOR) method, which
effectively reduces the gap among modalities while retaining
interaction information. Specifically, MENTOR begins by ex-
tracting representations from each modality using both het-
erogeneous user-item and homogeneous item-item graphs. It
then employs a multilevel cross-modal alignment task, guided
by ID embeddings, to align modalities across multiple levels
while retaining historical interaction information. To balance
effectiveness and efficiency, we further propose an optional
general feature enhancement task that bolsters the general
features from both structure and feature perspectives, thus en-
hancing the robustness of our model.

Code — https://github.com/Jinfeng-Xu/MENTOR

Introduction
The rapid growth of the Internet has led to significant infor-
mation overload. Recommendation systems aim to alleviate
information overload by simulating user preferences. How-
ever, the performance of traditional recommender systems
is limited by the data sparsity problem (Xu et al. 2024c).
Recent works on multimodal recommendation mitigate this
limitation by utilizing multimedia information. For example,
a line of work (He and McAuley 2016; Chen et al. 2017)
directly leverages multimodal information as side informa-
tion to improve the recommendation performance. In recent
years, many traditional works (He et al. 2020; Xu et al.

*Corresponding authors
Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

F

ID

T

V

T

ID

V

T

IDV

T ID

V

ID

T

V

IDT

V

ID

T

V

F

ID

T

V

F

ID
T

V

Movement of F-V/T
The absolute difference 
between the movement  
of F-V and F-T for F

Ideal F location

Movement of V-T

Movement of V-ID

Ideal V / T / ID location

Movement of T-ID

Origin distance

Current distance

Ideal V / T location

Movement of V-T

(a) (b) (c)

(g) (h) (i)

(d) (e) (f)

Movement of F-ID

𝒘𝒘𝑽𝑽

𝒘𝒘𝑻𝑻

𝒘𝒘𝑽𝑽

𝒘𝒘𝑻𝑻

𝒘𝒘𝑽𝑽

𝒘𝒘𝑻𝑻

𝒘𝒘𝑽𝑽/𝑻𝑻
Weight of V / T in fusion 
to determine origin VT 
location

Figure 1: Motivation of multi-level alignment. (a)-(c) de-
scribe the standard modality alignment, (d)-(f) describe sin-
gle modality alignment under ID guidance, and (g)-(i) de-
scribe fused (visual and textual) modality alignment under
single modality revise and ID guidance. V, T, ID, and F de-
note visual, textual, ID, and fused modalities, respectively.

2024b,a) utilize the graph convolutional network (GCN) to
capture latent information between users and items. Inspired
by these works, MMGCN (Wei et al. 2019) builds the user-
item interaction graph for each modality separately and ag-
gregates their prediction as the final rating prediction. Dual-
GNN (Wang et al. 2021) builds an extra homogeneous user-
user graph to explore the common user preference pattern.
LATTICE (Zhang et al. 2021) and FREEDOM (Zhou and
Shen 2023) introduce the item semantic graph to capture the
latent semantically correlative signals. More recently, LGM-
Rec (Guo et al. 2024) and DiffMM (Jiang et al. 2024) ex-
plore the effectiveness of hyper-graph structure and diffu-
sion model in the multimodal recommendation, respectively.

Besides, recent traditional recommendation methods uti-
lize self-supervised learning (SSL) to reduce label depen-
dence. SelfCF (Zhou et al. 2023b) uses self-supervised sig-
nals to enhance recommendation performance without rely-
ing on labels. SimGCL (Yu et al. 2022) and XSimGCL (Yu
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et al. 2023) effectively combine GCN and self-supervised
learning to design graph self-supervised learning. SLMRec
(Tao et al. 2022) migrates SSL to the multimodal recom-
mendation field, which effectively enhances the robustness
of the model. In the multimodal recommendation field, SSL
contributes to robustness enhancement while also effectively
aligning features between different modalities. BM3 (Zhou
et al. 2023c) and MMSSL (Wei et al. 2023) design SSL
tasks to align modalities. However, we highlight that stan-
dard modality alignment may result in the loss of valuable
interaction information, distancing modalities from the ID
embedding. For example, Fig. 1 (b) and (c) show that the
standard modality alignment leads both visual and textual
modality far from ID embedding.

To tackle this problem and better align modalities, we
propose a novel Multi-level sElf-supervised learNing for
mulTimOdal Recommendation, named MENTOR. It intro-
duces a novel multilevel self-supervised learning task that
enhances model robustness and aligns features across differ-
ent modalities without sacrificing historical interaction in-
formation. Specifically, MENTOR initially utilizes both het-
erogeneous user-item and homogeneous item-item graphs to
extract representations for each modality. Furthermore, it es-
tablishes a novel multilevel cross-modal alignment task that
effectively aligns different modalities under the direct and
indirect guidance of the ID embedding, thereby preserving
historical interaction information. As depicted in Fig. 1 (d)-
(f), each modality is aligned with the ID embedding, which
in turn indirectly aligns the fused modality with the ID em-
bedding, effectively preventing the loss of historical inter-
action information that often accompanies modality align-
ment. Nevertheless, various modalities contribute differently
to the fusion process. To optimize the alignment of the fused
modality and balance the weights of different modalities, we
directly align the fused modality with the ID embedding and
each individual modality, as illustrated in Fig. 1 (g)-(i). To
balance effectiveness and efficiency, we provide an optional
general feature enhancement task to enhance the general fea-
tures and robustness of our model from both feature masking
and graph perturbation perspectives.

In a nutshell, we summarize our contributions as follows:
• We propose a novel framework MENTOR for the multi-

modal recommendation, which alleviates both data spar-
sity and label sparsity problems.

• We propose a novel multilevel cross-modal alignment
task, which effectively aligns different modality features
without losing historical interaction information.

• We develop an optional general feature enhancement
task, which enhances the general features on both feature
masking and graph perturbation perspectives.

• We perform comprehensive experiments on three public
datasets in Amazon to validate the effectiveness of our
MENTOR on both overall and component levels.

Related Work
Multimodal Recommendation
Many recent works incorporate multimodal information to
alleviate the data sparsity problem. VBPR (He and McAuley

2016) is the first attempt to utilize visual content to allevi-
ate the data sparsity problem based on matrix factorization
(Rendle et al. 2012). Moreover, many works (Chen et al.
2019; Liu et al. 2019; Chen et al. 2017) enhance the rep-
resentation of items with both visual and textual modali-
ties to mitigate the data sparsity problem further. Inspired
by the traditional recommendation system, MMGCN (Wei
et al. 2019) adopts GCN to construct a bipartite graph to ex-
tract the latent information in user-item interactions. GRCN
(Wei et al. 2020) prunes the false-positive edges based on
MMGCN to reduce the noise in the user-item bipartite
graph. To explicitly mine the common preferences between
users, DualGNN (Wang et al. 2021) constructs an extra user
co-occurrence graph. LATTICE (Zhang et al. 2021) intro-
duces an item semantic graph to capture the latent correl-
ative signals between items. FREEDOM (Zhou and Shen
2023) freezing the item semantic graph based on LATTICE.
LGMRec (Guo et al. 2024) and DiffMM (Jiang et al. 2024)
explore the effectiveness of hyper-graph structure and diffu-
sion model in the multimodal recommendation, respectively.

Self-supervised Learning on Recommendation

In the traditional recommendation field, SSL effectively im-
proves the robustness of the model and mitigates the label
dependency. SelfCF (Zhou et al. 2023b) and BUIR (Lee
et al. 2021) generate different views to learn the represen-
tation of users and items from positive interaction, respec-
tively. MixGCF (Huang et al. 2021) designs a general nega-
tive sampling plugin that can be directly used to train GNN-
based recommender systems. MHCN (Yu et al. 2021) and
SGL (Wu et al. 2021) propose to generate SSL signals via
contrasting positive node pairs based on various augmenta-
tion operations. SimGCL (Yu et al. 2022) and XSimGCL
(Yu et al. 2023) discard the graph augmentations and in-
stead add uniform noises to the embedding space for cre-
ating contrastive views. In the multimodal recommendation
field, SLMRec (Tao et al. 2022) proposes two SSL tasks to
enhance the robustness of the model, including noise per-
turbation over features and multimodal pattern uncovering
augmentation. It is worth noting that SSL can also be used
to align features from different modalities. BM3 (Zhou et al.
2023c) simplifies the SSL task based on SLMRec, while
MMSSL (Wei et al. 2023) designs a cross-modal contrastive
learning task to preserve the inter-modal semantic common-
ality and user preference diversity jointly. However, these
methods inevitably generate a large amount of noise along
with modal alignment, which leads to significant attenua-
tion of historical interaction information. In this work, we
propose a multilevel cross-modal alignment task, which can
effectively align different modality features while retaining
historical interaction information.

Methodology

In this section, we present the MENTOR architecture and
describe each component in our proposed model. Fig. 2
shows the overall architecture of MENTOR.
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Figure 2: The architecture of our MENTOR. We first utilize both heterogeneous user-item and homogeneous item-item graphs
to learn the representation of each modality. Then, we fuse visual and textual modalities. Moreover, we utilize an alignment
self-supervised task (2) to align each modality without loss of interaction information. Besides, we provide an optional self-
supervised task to enhance the general features on both the feature masking task (1) and the graph perturbation task (3).

Problem Definition
Let U = {u} denote the user set and I = {i} denote the
item set. Then, we denote the features of each modal-
ity and the input ID embedding as Em = {Eum

∥Eim} ∈
Rdm×(|U|+|I|), where m ∈ M is the modality, M is the
set of modalities, dm is the dimension of the features, and
∥ denotes concatenation operation. We only consider ID,
visual, and textual modalities denoted by M = {id, v, t}.
However, our model can involve more modalities than these
three modalities.

Multimodal Information Encoder
Some previous works (Zhou and Shen 2023; Zhang et al.
2021) find that both the user-item heterogeneous graph and
the item-item homogeneous graph can significantly improve
the performance of multimodal recommendations. Inspired
by them, we propose a multimodal information encoder
component to extract the representation of each modality.

User-Item Graph To capture high-order modality-
specific features, we construct three user-item graphs G =
{Gm|Gid,Gv,Gt}. Each graph Gm maintains the same graph
structure and only retains the node features associated with
each modality. Formally, the user and item representations
at l-th graph convolution layer can be formulated as:

E(l)
um

=
∑
i∈Nu

1√
|Nu|

√
|Ni|

E
(l−1)
im

, (1)

E
(l)
im

=
∑
u∈Ni

1√
|Nu|

√
|Ni|

E(l−1)
um

, (2)

where Nu and Ni denote the one-hop neighbors of u and i
in G, respectively. The final embedding for each modality is
calculated by element-wise summation. Formally,

Em = {Eum
∥Eim}, Ēm =

L∑
l=0

E(l)
m , (3)

where L is the number of user-item graph layers.

Item-Item Graph To extract significant semantic rela-
tions between items, we use KNN to establish the item-item
graph based on the item features for each modality m. Par-
ticularly, we calculate the similarity score Sm

i,i′ between item
pair (i, i′) ∈ I by the cosine similarity on their modality
original features fm

i and fm
i′ .

Sm
i,i′ =

(fm
i )

⊤
fm
i′

∥fm
i ∥ ∥fm

i′ ∥
. (4)

We only retain the top-k neighbors:

Sm
i,i′ =

{
1 if Sm

i,i′ ∈ top-k (Sm
i )

0 otherwise
. (5)

Then, we aggregate multilayer neighbors:

A(l)
m =

∑
i′∈N i

Sm
i,i′A

(l−1)
i′m

, (6)
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where N i denotes the neighbors of item i in item-item
graph. Ai′m is the embedding of item i′ in modality m. In-
spired by (Zhou and Shen 2023), we freeze each item-item
graph after initialization to remove the computation costs of
the item-item graph during the training phase.

Multimodel Fusion
To combine multiple modalities to mine user preferences
jointly, we enhance the final embedding Ēm of the user-item
graph based on the final embedding A

(l)
m of the item-item

graph for each modality. The enhanced embedding Ëm can
be calculated as Ēim = Ēim +A

(l)
m and Ëm = {Ēum∥Ēim},

where ∥ denotes the concatenation operation.
Then, we fuse visual and textual modalities:

Ëf = {α× Ëv∥(1− α)× Ët}, (7)
where the attention weight α is a trainable parameter which
we initialize to be 0.5, Ëv and Ët are the representation of
visual and textual modalities respectively.

Multilevel Cross-Modal Alignment
The feature distributions of different modalities are ex-
tremely different. Existing methods (Wei et al. 2023; Zhou
et al. 2023c) directly align different modal features, which
may lose useful interaction information. We point out that
the multimodal recommendation aims to predict user prefer-
ences rather than to comprehend multimodal content. There-
fore, we propose a multilevel cross-modal alignment compo-
nent to align modalities from the data distribution perspec-
tive using self-supervised learning. Specifically, our multi-
level cross-modal alignment component encompasses three
levels: the standard modality alignment level, the ID indirect
guidance level, and the ID direct guidance level. The stan-
dard modality alignment level aims to reduce the disparity
between visual and textual modalities. The ID indirect guid-
ance level capitalizes on historical interaction information
embedded in the ID modality to augment similar features in
both visual and textual modalities. The ID direct guidance
level aligns the visual and textual modalities with the fused
modality to equilibrate modality weights, and directly aligns
the fused modality with the ID modality. We will introduce
all alignment levels, respectively.

Distribution Representation To achieve modal align-
ment without losing valuable modality features, we coarse-
grained align the mean and covariance for each modality.
Specifically, we directly calculate the mean and covariance
for each modality as follows:

{µf , µid, µv, µt} = Mean(Ëf , Ëid, Ëv, Ët),

{σf , σid, σv, σt} = Var(Ëf , Ëid, Ëv, Ët),
(8)

where Mean(·) and Var(·) calculate the mean and covari-
ance for each node: Rdm×(|U|+|I|) → R(|U|+|I|).

The Standard Modality Alignment In the standard
modality alignment level, as Fig. 1 (a)-(c) show, we directly
align the visual and textual modality to minimize the seman-
tic gap. The loss is defined as:

LL1 = |µv − µt|+ |σv − σt|. (9)

ID Indirect Guidance In ID indirect guidance level, as
Fig. 1 (d)-(f) show, we further align the visual modality and
textual modality with ID modality, respectively. Then we
fuse them together, the loss is defined as:

LL2v−id
= |µid − µv|+ |σid − σv|, (10)

LL2t−id
= |µid − µt|+ |σid − σt|, (11)

LL2 = LL2v−id
+ LL2t−id

. (12)

ID Direct Alignment In ID direct guidance level, as Fig. 1
(g)-(i) show, we align the visual modality and textual modal-
ity with fused modality to balance the modality weights, re-
spectively. Moreover, we directly align the fused modality
with ID modality. The loss is defined as:

LL3f−v
= |µf − µv|+ |σf − σv|, (13)

LL3f−t
= |µf − µt|+ |σf − σt|, (14)

LL3f−id
= |µf − µid|+ |σf − σid|, (15)

LL3 = LL3f−v
+ LL3f−t

+ LL3f−id
. (16)

We finally get the overall multilevel cross-modal align-
ment loss Lalign = λalign(LL1+LL2+LL3), where λalign

is the balancing hyper-parameter.

General Feature Enhancement
We further propose an optional general feature enhance-
ment component to enhance the general feature from both
the graph and feature perspectives to improve the robust-
ness of our model. This component includes two tasks: fea-
ture masking and graph perturbation. The feature masking
task generates different views from feature perspectives as
shown in task (1) of Fig. 2. The graph perturbation task gen-
erates different views from the graph perspective using ran-
dom noise as shown in task (3) of Fig. 2.

Feature Masking We first split Ë as two sides Ëu and Ëi.
Then, we utilize dropout mechanism to mask out a subset of
these embeddings to generate one contrastive view by Ėu =
Ëu · Bernoulli(p) and Ėi = Ëi · Bernoulli(p). Then, we
place stop-gradient on Ėi and Ėu and transfer them through
MLP to construct another contrastive view by Èu = ËuW

+ b and Èi = ËiW + b, where W ∈ Rdm×dm , b ∈ Rdm

denote the linear transformation matrix and bias. Formally:

Lenhancef = (1−Sim(Ėu, Èu))+(1−Sim(Ėi, Èi)), (17)

where Sim(·) is the cosine similarity.

Graph Perturbation We follow the most commonly used
augmentation methods based on the dropout mechanism in
graphs (Wu et al. 2021; You et al. 2020) to construct con-
trastive views of structural perturbations for both visual and
textual modalities. We propose a perturbed user-item graph:

†E(l)
um

=
∑
i∈Nu

1√
|Nu|

√
|Ni|

E
(l−1)
im

+∆(l), (18)

†E(l)
im

=
∑
u∈Ni

1√
|Nu|

√
|Ni|

E(l−1)
um

+∆(l), (19)
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where most parameters are the same as Eq. 1-2, and ∆(l) ∈
Rdm ∼ U(0, 1) is a random noise vector.

The final perturbed embedding for each modality is cal-
culated as:

†Em = {†Eum∥ † Eim}, †Ēm =
L∑

l=0

†E(l)
m . (20)

For both visual and textual modalities, we generate two
contrastive views †Ē1

m and †Ē2
m for each modality and adopt

InfoNCE (Oord, Li, and Vinyals 2018). Formally:

Lenhancegm =
∑
u∈U

− log
exp

(
e1u,m · e2u,m/τ

)
∑

v∈U exp
(
e1u,m · e2v,m/τ

)
+
∑
i∈I

− log
exp

(
e1i,m · e2i,m/τ

)
∑

j∈I exp
(
e1i,m · e2j,m/τ

) ,
(21)

where e1u,m and e2u/v,m are the modality m features of user
u/v in contrastive views †Ē1

m and †Ē2
m. Besides, e1i,m and

e2i/j,m are the modality m features of item i/j in contrastive
views †Ē1

m and †Ē2
m. τ is the temperature hyper-parameter.

The total graph perturbation loss is calculated as Lenhanceg
=Lenhancegv +Lenhancegt

. Finally, the overall general fea-
ture enhancement loss is:

Lenhance = λgLenhanceg + λfLenhancef , (22)

where λg and λf are the balancing hyper-parameters.

Optimization
We adopt the Bayesian Personalized Ranking (BPR) loss
(Rendle et al. 2012) as the basic optimization function. Es-
sentially, BPR aims to widen the predicted preference mar-
gin between the positive and negative items for each triplet
(u, p, n) ∈ D, where D denotes the training set. The positive
item p refers to the one with which the user u has interacted,
while the negative item n has been randomly chosen from
the set of items that the user u has not interacted with. The
BPR function is defined as follows:

Lbpr =
∑

(u,p,n)∈D

− log(σ(yu,p − yu,n)), (23)

where yu,p and yu,n are the ratings of user u to the positive
item p and negative item n, calculated by ËT

u Ëp and ËT
u Ën,

respectively. σ is the Sigmoid function. The final loss is:

L = Lbpr+Lalign+Lenhance+λE(∥Ev∥22+∥Et∥22), (24)

where Ev and Et are the model parameters. λ is a hyper-
parameter to control the effect of the L2 regularization. To
trade off efficiency and effectiveness, Lenhance can be en-
tirely or partly retained.

Experiment
In this section, we conduct comprehensive experiments
to evaluate the performance of our MENTOR model on

Dataset # Users # Items # Interaction Sparsity
Baby 19445 7050 160792 99.88%
Sports 35598 18357 296337 99.95%

Clothing 39387 23033 278677 99.97%

Table 1: Statistics of the experimental datasets.

three widely used real-world datasets. The following five
questions can be well answered through experiment re-
sults: RQ1: How effective is our MENTOR compared with
the state-of-the-art traditional recommendation methods and
multimedia recommendation methods? RQ2: How do the
key components of our MENTOR impact its performance?
RQ3: Can the multilevel cross-modal alignment component
effectively align different modalities? RQ4: How efficient is
our MENTOR compared with other methods? RQ5: How
sensitive is MENTOR with different hyper-parameters?

Experimental Settings
Datasets To evaluate our proposed MENTOR in the top-
N item recommendation task, we conduct extensive exper-
iments on three widely used Amazon datasets (McAuley
et al. 2015): Baby, Sports, and Clothing. These datasets pro-
vide both product descriptions and images simultaneously.
Following the previous works (He and McAuley 2016; Wei
et al. 2019), the raw data of each dataset are pre-processed
with a 5-core setting on both items and users. Besides, we
use the pre-extracted 4096-dimensional visual features and
extract 384-dimensional textual features using a pre-trained
sentence transformer (Zhou 2023). The statistics of these
datasets are presented in Table 1.

Baselines To demonstrate the effectiveness of our pro-
posed MENTOR, we compare it with the following state-
of-the-art recommendation methods, which can be divided
into two groups: traditional recommendation methods (MF-
BPR (Rendle et al. 2012), LightGCN (He et al. 2020), and
LayerGCN (Zhou et al. 2023a)) and multimedia recommen-
dation methods (VBPR (He and McAuley 2016), MMGCN
(Wei et al. 2019), DualGNN (Wang et al. 2021), LAT-
TICE (Zhang et al. 2021), FREEDOM (Zhou and Shen
2023), SLMRec (Tao et al. 2022), BM3 (Zhou et al. 2023c),
MMSSL (Wei et al. 2023), LGMRec (Guo et al. 2024), and
DiffMM (Jiang et al. 2024)).

Evaluation Protocols To evaluate the performance fairly,
we adopt two widely used metrics: Recall@K (R@K) and
NDCG@K (N@K). We report the average metrics of all
users in the test dataset under both K = 10 and K = 20. We
follow the popular setting (Zhou and Shen 2023) with a ran-
dom data splitting 8:1:1 for training, validation, and testing.

Implementation Details We implement MENTOR and
all baselines with MMRec (Zhou 2023). For the general set-
tings, we initialized the embedding with Xavier initializa-
tion (Glorot and Bengio 2010) of dimension 64. Besides, we
optimize all models with Adam optimizer (Kingma and Ba
2014). To achieve a fair evaluation, we perform a complete
grid search for each baseline method following its published
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Datasets Baby Sports Clothing
Model R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20

MF-BPR 0.0357 0.0575 0.0192 0.0249 0.0432 0.0653 0.0241 0.0298 0.0187 0.0279 0.0103 0.0126
LightGCN 0.0479 0.0754 0.0257 0.0328 0.0569 0.0864 0.0311 0.0387 0.0340 0.0526 0.0188 0.0236
LayerGCN 0.0529 0.0820 0.0281 0.0355 0.0594 0.0916 0.0323 0.0406 0.0371 0.0566 0.0200 0.0247

VBPR 0.0423 0.0663 0.0223 0.0284 0.0558 0.0856 0.0307 0.0384 0.0281 0.0415 0.0158 0.0192
MMGCN 0.0378 0.0615 0.0200 0.0261 0.0370 0.0605 0.0193 0.0254 0.0218 0.0345 0.0110 0.0142
DualGNN 0.0448 0.0716 0.0240 0.0309 0.0568 0.0859 0.0310 0.0385 0.0454 0.0683 0.0241 0.0299
LATTICE 0.0547 0.0850 0.0292 0.0370 0.0620 0.0953 0.0335 0.0421 0.0492 0.0733 0.0268 0.0330

FREEDOM 0.0627 0.0992 0.0330 0.0424 0.0717 0.1089 0.0385 0.0481 0.0629 0.0941 0.0341 0.0420
SLMRec 0.0529 0.0775 0.0290 0.0353 0.0663 0.0990 0.0365 0.0450 0.0452 0.0675 0.0247 0.0303

BM3 0.0564 0.0883 0.0301 0.0383 0.0656 0.0980 0.0355 0.0438 0.0422 0.0621 0.0231 0.0281
MMSSL 0.0613 0.0971 0.0326 0.0420 0.0673 0.1013 0.0380 0.0474 0.0531 0.0797 0.0291 0.0359
LGMRec 0.0639 0.0989 0.0337 0.0430 0.0719 0.1068 0.0387 0.0477 0.0555 0.0828 0.0302 0.0371
DiffMM 0.0623 0.0975 0.0328 0.0411 0.0671 0.1017 0.0377 0.0458 0.0522 0.0791 0.0288 0.0354

MENTORfg 0.0649 0.1011 0.0350 0.0440 0.0727 0.1094 0.0390 0.0481 0.0636 0.0949 0.0343 0.0428
MENTORf 0.0663 0.1037 0.0358 0.0449 0.0749 0.1126 0.0404 0.0505 0.0661 0.0981 0.0359 0.0443∗
MENTORg 0.0666 0.1034 0.0355 0.0454∗ 0.0750 0.1129 0.0400 0.0507 0.0653 0.0977 0.0351 0.0438
MENTOR 0.0678∗ 0.1048∗ 0.0362∗ 0.0450 0.0763∗ 0.1139∗ 0.0409∗ 0.0511∗ 0.0668∗ 0.0989∗ 0.0360∗ 0.0441

Improv. 6.10% 5.65% 7.42% 5.58% 6.12% 4.59% 5.68% 6.24% 6.20% 5.10% 5.57% 5.48%

Table 2: Performance comparison of baselines and MENTOR in terms of Recall@K (R@K), and NDCG@K (N@K). The
superscript ∗ indicates the improvement is statistically significant where the p-value is less than 0.05.

paper to find the optimal setting. For our MENTOR, we per-
form a grid search on the dropout ratio in {0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7}, balancing hyper-parameter λf in {0.5, 1, 1.5,
2, 2.5}, balancing hyper-parameter λg in {1e-2, 1e-3, 1e-4},
temperature hyper-parameter τ in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8}, and balancing hyper-parameter λalign in {0.1, 0.2,
0.3}. We fix the learning rate with 1e-4, and the number of
layers in the heterogenous graph with L = 2. The k of top-k
in the item-item graph is set as 40. For convergence consid-
eration, the early stopping is fixed at 20. Following (Zhou
2023), we update the best record by utilizing Recall@20 on
the validation dataset as the indicator.

Effectiveness of MENTOR (RQ1)
Table 2 summarizes the performance of our proposed MEN-
TOR and other baseline methods on three datasets. From the
table, we find the following observations:
MENTOR achieves better performance than both tradi-
tional and multimodal recommendation methods. Specif-
ically, our MENTOR improves the best baseline by 5.65%,
4.59%, and 5.10% in terms of Recall@20 on Baby, Sports,
and Clothing, respectively. The results verify the effective-
ness of our MENTOR. We attribute the enhancement that
our multi-level self-supervised alignment task effectively
aligns all modalities while retaining interaction information.
Leveraging multimodal information can effectively im-
prove recommendation accuracy. Specifically, the recent
multimodal recommendation methods generally outperform
traditional recommendation methods in all scenarios. This
demonstrates that multimodal recommendation methods can
effectively mitigate the data sparsity problem by leveraging
multiple modalities to jointly mine user preferences.
Our multi-level alignment task achieves significant im-
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Figure 3: Effect of multilevel cross-modal alignment.

provement over other multimodal alignment tasks. Com-
pared with other models (BM3 and MMSSL) that incorpo-
rate multimodal alignment tasks, MENTOR achieves around
10% improvement for all datasets without complexity tech-
niques (e.g., DiffMM leverage diffusion modal and LGM-
Rec construct hyper-graph).

Ablation Study (RQ2)
In this section, we conduct exhaustive experiments to evalu-
ate the effectiveness of different components of MENTOR.

Effect of Multilevel Cross-Modal Alignment To inves-
tigate the effects of the multilevel cross-modal alignment
component, we design the following variants of MENTOR.

• MENTORbase, which removes the entire multilevel
cross-modal alignment.

• MENTORL1, which retains the standard modality align-
ment level in the multilevel cross-modal alignment.
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Dataset Metrics MMGCN LATTICE FREEDOM LGMRec MENTORfg MENTOR

Baby Memory (GB) 2.69 4.53 2.13 2.41 2.30 7.12
Time (s/epoch) 4.03 3.13 2.45 4.05 3.22 6.07

Sports Memory (GB) 3.91 19.93 3.34 3.67 3.55 8.44
Time (s/epoch) 14.47 10.99 5.49 8.24 7.26 9.01

Clothing Memory (GB) 4.24 28.22 4.15 4.81 4.48 12.99
Time (s/epoch) 19.83 18.78 6.02 9.48 8.08 11.39

Table 3: Efficiency Analysis.

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

(a) MENTORbase-V and T

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

(b) MENTOR-V and T

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

(c) MENTORbase-ID

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

(d) MENTOR-ID

Figure 4: Green, blue, and orange represent the visual, tex-
tual, and ID modalities, respectively.

• MENTORL2, which retains the standard modality align-
ment and ID indirect guidance levels in the multilevel
cross-modal alignment.

Fig. 3 shows that each level of our multilevel cross-modal
alignment component leads to an obvious improvement for
all datasets, and their effects can be superimposed on each
other. To verify the effectiveness of ID indirect and direct
guidance, we further verify the effectiveness of our multi-
level cross-modal alignment by visualization analysis.

Effect of General Feature Enhancement To analyze the
effectiveness of the general feature enhancement component
in MENTOR, the following variants are constructed:

• MENTORfg: We remove the whole general feature en-
hancement component.

• MENTORf : We remove the feature masking task in the
general feature enhancement component.

• MENTORg: We remove the graph perturbation task in
the general feature enhancement component.

As illustrated in Table 2, we point out that all variants still
outperform all baselines. Moreover, further performance
gains can be achieved by using this component, so there is
flexibility to trade off based on effectiveness and efficiency.
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Figure 5: Effect of the balancing hyper-parameter λalign.

Visualization Analysis (RQ3)
To further verify the effectiveness of our multilevel cross-
modal alignment, we visualize the distribution of the repre-
sentation. Fig. 4 shows the impact of our multilevel cross-
modal alignment component in the 2-dimension perspec-
tive. The two models of our comparison are MENTORbase

and MENTOR. Specifically, we randomly sample 500 items
from the Baby dataset. Then, we use t-SNE (Van der Maaten
and Hinton 2008) to map embedding to the 2-dimension
space. We observe that the textual modality distribution of
MENTORbase is relatively more discrete than the visual
modality distribution of MENTORbase. Besides, the textual
and visual modality distributions of MENTOR are closer
to each other compared with MENTORbase. Moreover, the
distributions of visual and textual modalities of MENTOR
are more similar to ID modality. Therefore, we attribute this
effective alignment to the guidance of ID modality, which
retains significant interaction information. We measure the
average distance between the visual and textual modalities,
which are 0.44 for MENTORbase and 0.18 for MENTOR.

Efficiency Study (RQ4)
In this section, we compare the efficiency of MENTOR with
baselines. Specific statistical memory and time are shown in
Table 3. The light version MENTORfg achieves outstanding
performance with low computation costs. The entire MEN-
TOR provides superior performance without seriously com-
promising training speed.

Hyper-parameter Analysis (RQ5)
The Balancing Hyper-parameter λalign Fig. 5(a) and
Fig. 5(b) show the performance trends of MENTOR with
different settings of λalign. We observe that the optimal
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Figure 6: Sparsity degree analysis on three datasets.
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Figure 7: Performance of MENTOR with respect to different
hyper-parameter pairs (p,λf ) and (τ ,λg).

λalign on Baby and Sports datasets is 0.1, while the optimal
λalign on Clothing datasets is 0.2.
The Pair of Hyper-parameters p and λf As Fig. 7(a)-7(e)
shown, we find that hyper-parameters λf and p influence

each other, so we need to select them in pairs. For Baby
and Sports datasets, the optimal values of (λf , p) pair are
(1.5, 0.5) and (1.5, 0.4). Moreover, for Clothing dataset, the
optimal value of (λf , p) pair is (1, 0.3). A possible reason
for these results is that the Clothing dataset is more sparse
than the other two datasets, which makes it more sensitive to
dropout operations.
The Pair of Hyper-parameters λg and τ The balancing
hyper-parameter λg and the temperature hyper-parameter τ
jointly control the feature masking task in the general fea-
ture enhancement component. Fig. 7(b)-7(f) shows that the
best performances are achieved with (λg , τ ) = (1e-3, 0.2) on
Baby and Sports datasets. For Clothing dataset, the optimal
value of (λg , τ ) is (1e-3, 0.1) or (1e-4, 0.2).

Different Data Sparsity
We further test the effectiveness of MENTOR with differ-
ent data sparsity settings on all three datasets. We choose
the four latest and best-performed models as baselines, in-
cluding MMSSL, FREEDOM, LGMRec, and DiffMM. We
split each dataset into three sub-datasets based on users’ in-
teracted item numbers in the training set. Fig. 6 shows that
MENTOR provides consistently more powerful and robust
performance than all baselines on all datasets with different
degrees of sparsity. We attribute this outstanding and stable
performance to our well-designed self-supervised tasks.

Conclusion
In this paper, we propose a novel self-supervised learning
framework in multimodal recommendation, named MEN-
TOR, for multimodal recommendation. After learning the
representation of all modalities by our powerful multimodal
information encoder. MENTOR introduces a tailored mul-
tilevel cross-modal alignment task to align different modal-
ities on data distribution while retaining historical interac-
tion information. Moreover, MENTOR devises an optional
general feature enhancement contrastive learning task from
both the feature and graph perspectives to improve the model
robustness. Our extensive experimental results on several
widely used datasets show that MENTOR achieves signif-
icant accuracy improvement compared with the state-of-the-
art multimodal recommendation methods.
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